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Abstract

Most Markov chains that describe networks of stochastic reactions have a huge state space. This
makes exact analysis infeasible and hence the only viable approach, apart from simulation, is ap-
proximation. In this paper we derive a product form approximation for the transient probabilities
of such Markov chains. The approximation can be interpreted as a set of interacting time in-
homogeneous Markov chains with one chain for every reactant of the system. Consequently, the
computational complexity grows only linearly in the number of reactants and the approximation
can be carried out for Markov chains with huge state spaces. Several numerical examples are
presented to illustrate the approach.

Keywords: stochastic reaction network; Markov chain; transient analysis; product form
approximation.

1 Introduction

In [9,10], Gillespie provided a stochastic description of the evolution of a
general chemical reaction system. This description corresponds to a simple
stochastic process, namely, a continuous time Markov chain (CTMC). Con-
sequently, in principle, we have the possibility of analysing such systems by
constructing the infinitesimal generator matrix of the CTMC and computing
its exponential. Computing the exponential of a matrix is not straightforward
in general [17] but for matrices representing Markov chains efficient and nu-
merically stable techniques have been developed [12,19]. Even these technique
can fail however if the number of states of the Markov chain is very large or
infinite, which is often the case when reaction systems are considered.

Several approximation techniques have been proposed to overcome the
problem of the huge state space. The mean-field approach, based on the rela-
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tion of the trajectories followed by the CTMC and the differential equation-
based description of the system [13,14], provides a deterministic approximation
of the system behaviour. The approximation provided by the mean-field ap-
proach can be seen as the approximate average behaviour of the model. The
idea can be extended to higher order and joint moments of the population
levels leading to more precise approximations [8].

Other techniques obtain approximations by operating directly on the state
space of the model. As the state space can be infinite it is natural to bound the
set of states that are considered [7]. Moreover, as the system evolves, it can
be necessary to apply dynamic bounding in order to take into account at any
transient time the most probable region of the state space. As the calculations
can be slow even on the reduced state space, recently, faster approximate
uniformisation methods have been proposed [16,23]. A further possibility to
deal with the huge state space consists in aggregation. One natural option is
to aggregate nearby states [22,5] while a somewhat more intricate aggregation
can be obtained by applying flow equivalence [4,6].

Another approach to the analysis of large (or infinite) Markov chains rep-
resenting reaction networks is simulation. Because of the huge state space and
the fact that a large amount of reactions can occur in a short time interval,
even simulation is not straightforward. Starting from [9], several papers have
proposed approaches to increase the efficiency of simulation of reaction sys-
tems. The most used among these approaches are explicit [11] and implicit
[18] tau-leaping, which uses an approximation to “leap over“ many reactions
in a single step, and the slow-scale stochastic simulation algorithm [3], which
aims at facing stiffness of the dynamics of the model by distinguishing fast
and slow reactions.

In this paper we present a novel approximation technique. We leave the
state space of the model unchanged (i.e., we do not perform reductions and
aggregations) but we simplify the analysis by making assumptions on the tran-
sient probabilities of the model. In particular, we assume that the transient
probabilities are of product form. This assumption allows us to have a com-
pact description of the transient probabilities and hence to analyse systems
whose state space would otherwise be of prohibitive size.

The result most related to our technique is the one presented in [2] where
the authors provide a necessary and sufficient condition for a network of
Markovian queues to have transient product form. The condition is that the
network is composed of infinite server queues. Clearly, not all reaction net-
works correspond to a network of infinite server queues and hence the product
form assumption does not hold in general. We will show however, through
numerical experiments, that the closer the reaction network is to a queueing
network of infinite servers, the better the approximation will be.

The paper is organised as follows. In Section 2 the considered system of
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reactions are described in brief. In Section 3 we introduce our approxima-
tion approach. Properties of the approximation are discussed in Section 4.
Numerical examples are provided in Section 5. In Section 6 conclusions are
drawn.

2 Model formulation

We consider a system of M reactants (called also species), R1, R2, ..., RM ,
interacting through N reactions:

M∑
m=1

anmRm
λn−→

M∑
m=1

bnmRm, 1 ≤ n ≤ N. (1)

The nth reaction uses up anm units of reactant Rm and produces bnm units of
it. Both anm and bnm are non-negative integer values and will be organised
into vectors as an = |an1, ..., anM | and bn = |bn1, ..., bnM |. We will denote
by cnm = bnm − anm the overall effect of reaction n on reactant m and the
corresponding vector will be denoted by cn = |cn1, ..., cnM |. The speed of the
nth reaction is given by λn. There are two classical approaches to associate a
temporal behaviour with the reactions in (1).

The stochastic approach associates a continuous time Markov chain
(CTMC) with the system [9]. The CTMC is discrete state, i.e., the quan-
tity of a given reactant at any time t is given by an integer and the state of
the chain is given by a vector of integers. In state X = |X1, ..., XM | reaction n
is possible if Xm ≥ anm, 1 ≤ m ≤M . We will apply the relation ≥ to vectors
meaning that X ≥ an if and only if Xm ≥ anm, 1 ≤ m ≤ M . If reaction n is
possible in state X then its intensity is given by

λn

M∏
m=1

(
Xm

anm

)
(2)

and the corresponding transition takes the CTMC from stateX to stateX+cn.
We will denote by p(X, t) the probability that the CTMC is in state X at time
t and this quantity satisfies the following well-known Chapman-Kolmogorov
ordinary differential equation (ODE)

dp(X, t)

dt
=− p(X, t)

∑
n:X≥an

λn

M∏
m=1

(
Xm

anm

)
+

∑
n:X−cn≥an

p(X − cn, t)λn
M∏
m=1

(
Xm − cnm

anm

)
. (3)
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The second, deterministic approach describes the reactions not as discrete
transitions but by assuming that the reactions are modifying infinitesimal
quantities of the involved species. Consequently, the quantities of the reactants
are given by continuous values and ODEs describe the evolution of the system.
By applying mass action kinetics [20], the ODEs are

Rm(t)

dt
=

N∑
n=1

λncnm

M∏
i=1

Ri(t)
ani

ani!
(4)

where Rm(t) ∈ R≥0 is the quantity of reactant Rm at time t. Having set the
initial values, Rm(0), 1 ≤ m ≤ M , the set of ODEs in (4) can be solved by
numerical integration and results in a deterministic temporal behaviour.

The deterministic approach described above happens to be the mean-field
approximation of the CTMC of the stochastic approach. Moreover, Kurtz has
shown [14] that, as the initial population levels are increased and the reaction
intensities are adjusted accordingly (giving rise to a series of so-called level-
dependent Markov chains), the trajectory followed by the CTMC tends to the
trajectory described by the ODEs of the deterministic approach.

Throughout the paper we will use the well-known Lotka-Volterra model to
illustrate the approach. This model, proposed independently by Lotka [15] and
Volterra [21], uses three reactions to describe the evolution of two populations
in competition. The three reactions are

growth of prey: R1
λ1−→ 2R1,

growth of predator: R1 +R2
λ2−→ 2R2,

death of predator: R2
λ3−→ ∅

and the Markov chain of the model is depicted in Figure 1. The mean-field
approximation of the model is provided by the ODEs

R1(t)

dt
= λ1R1(t)− λ2R1(t)R2(t),

R2(t)

dt
= λ2R1(t)R2(t)− λ3R2(t)

which leads to oscillation along closed curves except if the system is started
in equilibrium state.

3 Product form approximation

In order to derive the proposed approximation, we assume that the transient
probabilities of the model are of product form. This means that, denoting by
p(x,m, t) the probability that at time t there are x units of reactant m, the
transient probability of a state can be written as p(X, t) =

∏M
m=1 p(Xm,m, t).
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Fig. 1. Boundaries and a generic state of the Markov chain of the Lotka-Volterra model (each state
is labelled by the number of preys and predators).

The quantity p(x,m, t) satisfies the ODE

dp(x,m, t)

dt
=
d
∑

X:Xm=x p(X, t)

dt
=

∑
X:Xm=x

dp(X, t)

dt
(5)

which by applying (3) and the product form assumption becomes

dp(x,m, t)

dt
=

∑
X:Xm=x

[
−
∑

n:X≥an

λn

M∏
i=1

p(Xi, i, t)

(
Xi

ani

)
+

∑
n:X−cn≥an

λn

M∏
i=1

p(Xi − cni, i, t)
(
Xi − cni
ani

)]
. (6)

The order of the summation in (6) can be inverted which leads to

dp(x,m, t)

dt
=−

∑
n:x≥anm

λn

(
x

anm

)
p(x,m, t)

M∏
i=1,i 6=m

f(i, ani, t)+

∑
n:x−cnm≥anm

λn

(
x− cnm
anm

)
p(x− cnm,m, t)

M∏
i=1,i 6=m

f(i, ani, t) (7)

where the quantity f(i, j, t) is strongly related to the jth factorial moment of
the quantity of the ith reactant at time t and is defined as

f(i, j, t) =
∞∑
k=j

(
k

j

)
p(k, i, t) . (8)

4 Properties of the approximation

The ODEs in (7) describing our product form approximation can be inter-
preted as M interacting, time inhomogeneous Markov chains in which a chain
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Fig. 2. Approximating time inhomogeneous Markov chains for the Lotka-Volterra model; upper
part: preys, lower part: predators.

corresponding to a given reactant models the reactions in which the reactant is
involved by taking into account the quantities given in (8) of the other chains.
This interpretation is depicted in Figure 2 for the Lotka-Volterra model. It
follows that numerical solution techniques developed for time inhomogeneous
Markov chains, like the one proposed in [1], can be applied to calculate the
transient probabilities.

Let us denote by rm, 1 ≤ m ≤ M the number of values of x for which the
probability p(x,m, t) is not negligible. Then the number of ODEs describing
the approximation is

∑M
m=1 rm. This quantity grows linearly with the number

of reactants and hence the method scales well.

As mentioned in Section 2, if we consider a series of level-dependent Markov
chains with increasing initial state, the transient behaviour tends to the mean-
field approximation of the model [13,14]. The same holds for the approxima-
tion we proposed. Increasing initial population levels gives rise to a series
of level-dependent, interacting, time inhomogeneous Markov chains and the
transient behaviour for this series tends to the mean-field approximation. This
means that the same relation holds between the proposed product form ap-
proximation and the mean-field approximation as between the original Markov
chain model and the mean-field approximation.

5 Numerical examples

As a first example we consider an exceedingly simple model to show when
the approximation fails to provide accurate results. The model is com-

posed of the single reaction R1 + 2R2
1−→ ∅ and the starting state is

(100, 100). It is obvious that the model satisfies the invariant 2(100 − R1) =
100 − R2 and hence the state space is composed of 51 states which are
(100, 100), (99, 98), (98, 96), . . . , (50, 0). The two interactive, time inhomoge-
neous Markov chains representing our product form approximation is depicted
in Figure 3. There are two important differences between the original model
and its approximation. The approximation does not maintain the invariant of
the original model. Moreover, in the original model the quantity of reactant
R1 cannot decrease below 50 while it can happen in the approximating model.

6



Angius, Horváth
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Fig. 3. Approximating time inhomogeneous Markov chains for the R1 + 2R2
1−→ ∅ model; upper

part: R1, lower part: R2.
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Fig. 4. Mean (left) and variance (right) for the R1 + 2R2
1−→ ∅ model.

Consequently, the approximation works with 152 differential equations and
requires more computation than the original model. This is, however, not the
case in general. In case of models containing more reactants and not having
very restrictive invariants, the approximation requires much less calculation
than the original model.

In Figure 4 we depicted the exact and the approximated mean and variance
of the involved quantities as function of time. The approximation describes
precisely the mean of both reactants and provides good estimate of the vari-
ance of R2 while it fails on the variance of R1. Figure 5 shows the distribution
of the quantity of the reactants for a few different transient times. For distri-
butions as well, the approximation is good for R2 and it is bad for R1. The
result is not surprising as the model is far from being product form and for R1

it introduces values which are not possible in the original model. In Figure 6
we compare the precision of the mean obtained by the product form approxi-
mation and the precision of the mean-field approach. It can be seen that the
approach we proposed, even if the model is unfavourable for it, provides more
precise mean values than the mean-field approximation.

As a second example we consider the preys-predators model of Lotka and
Volterra. First, we start the model in state (2000, 2000) and use reaction
rates λ1 = 10, λ2 = 0.01, λ3 = 10. The mean and the variance of the number
of predators obtained by simulation and by the product form approximation
are depicted in Figure 7. Even if the population levels are high, the mean
deviates away soon from the stable oscillation pattern. The product form
approximation predicts instead stable oscillation of the mean and provides
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Fig. 5. The R1 + 2R2
1−→ ∅ model: distribution of R1 (left) R2 (right) for different transient

times (for R2 every odd value is of zero probability; in order to have a clean figure we plotted only
non-zero probabilities).
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Fig. 6. The R1 + 2R2
1−→ ∅ model: relative error of the mean provided by the proposed product

form approximation and of the mean-field approximation; left R1, right: R2.
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Fig. 7. The Lotka-Volterra model with λ1 = 10, λ2 = 0.01, λ3 = 10 and initial state (2000, 2000):
mean value (left) and variance (right) of the number of predators by simulation and by product
form approximation.

very similar mean to that of the mean-field approach (which is not depicted
in Figure 7 because it cannot be distinguished from the mean provided by the
product form approach). The variance pattern provided by the product form
approximation gives instead a more precise picture of what happens in the
original model.

In Figure 8 we depicted the same quantities as in Figure 7 but starting
the model from state (200, 200) and with rates λ1 = 10, λ2 = 0.1, λ3 = 10.
The mean-field approximation of the model with these parameters is the same
as with the parameters used before. However, as the number of preys and
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Fig. 8. The Lotka-Volterra model with λ1 = 10, λ2 = 0.1, λ3 = 10 and initial state (200, 200):
mean value (left) and variance (right) of the number of predators by simulation and by product
form approximation.
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Fig. 9. The Lotka-Volterra model with λ1 = 10, λ2 = 0.1, λ3 = 10 and initial state (200, 200):
extinction of predators by simulation and by product form approximation.

predators are lower, the model deviates from stable oscillation faster. The
product form approximation is not able to capture this behaviour and pro-
vides imprecise estimate of both the mean and the variance. Figure 9 shows
the probability of extinction of predators as function of time obtained by sim-
ulation and the proposed approximation. The reason that the approximation
fails to give precise estimates is that the behaviour of the system depends
strongly on the correlation of the population levels which is not captured by
the product form probabilities.

Our third example is an extended version of the Lotka-Volterra model. We
consider two types of prey and two types of predators. The set of reaction are
the following:

growth of preys: R1
10−→ 2R1, R2

10−→ 2R2,

growth of predators: R1 +R3
0.015−→ 2R3, R1 +R4

0.03−→ 2R4,

R2 +R3
0.02−→ 2R3, R2 +R4

0.025−→ 2R4,

death of predators: R3
10−→ ∅, R4

15−→ ∅ .

The mean-field approach associates stable oscillation with model. This model,
as there are more species and more reactions than in the original Lotka-
Volterra model, maintains the oscillation for more time. In Figure 10 and
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Fig. 10. The extended Lotka-Volterra model: mean (left) and variance (right) of the number of
both types of preys by simulation and by product form approximation.
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Fig. 11. The extended Lotka-Volterra model: mean (left) and variance (right) of the number of
both types of predators by simulation and by product form approximation.

11 we show the mean and the variance of all the species involved in the sys-
tem. The mean provided by the mean-field approach is not shown as it is
indistinguishable from the mean provided by the product form approxima-
tion. For this model the product form approach gives good estimate of the
mean and illustrate well the behaviour of the variance of the species. Note
that, since there are four species involved, the original Markov chain is huge
even if the states with negligible probability are not considered. The prod-
uct form approach requires instead to solve a system of ODEs with about
6000 equations which took about 2 minutes on an ordinary laptop using the
odeToJava package 1 .

As the last example we consider models which are close to networks of
infinite server queues and hence their transient probabilities are approximated
well in product form. We consider the reactions

∅ 20−→ R1, R1
0.5−→ R2, ∅ 2−→ R3, R2

1−→ R3, R3
1−→ R4, R4

1−→ ∅, R2 +R4
λ−→ ∅

where only the last reaction causes the system not to be a network of infinite
servers. The larger the rate associated with this reaction the worse the product
form approximation. The initial state is |0, 0, 0, 0|. In Figures 12 and 13 we
show the mean and the variance of the quantity of R2 and R4. The mean

1 Available at http://www.netlib.org/ode/ and developed by M. Patterson and R. J. Spiteri.
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Fig. 12. Perturbed network of infinite queues: mean of R2 (left) and R4 (right).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10

time

appr. var., R2, λ=0.1
sim. var., R2, λ=0.1

appr. var., R2, λ=0.5
sim. var., R2, λ=0.5
appr. var., R2, λ=1
sim. var., R2, λ=1

 0

 1

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10

time

appr. var., R4, λ=0.1
sim. var., R4, λ=0.1

appr. var., R4, λ=0.5
sim. var., R4, λ=0.5
appr. var., R4, λ=1
sim. var., R4, λ=1

Fig. 13. Perturbed network of infinite queues: variance of R2 (left) and R4 (right).

is approximated well for both reactants while the variance is captured well
for R4 and is underestimated for R2. The calculations required less than two
seconds.

6 Conclusions

In this paper we derived a product form approximation for the transient prob-
abilities of Markov chains representing reaction networks. The computational
effort of the method grows only linearly with the number of reactants and
hence it can be applied to reaction networks for which the exact analysis
of the corresponding Markov chain is unfeasible. We tested the method on
several examples and found that if the average behaviour of the system is
captured well by the mean-field approach or the transient system behaviour
is close to product form then the proposed approximation provides a good
picture of the variance and the distribution of the quantity of the reactants.
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