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Abstract

Modularity - the notion that individual components can be described as self-contained units and
composed in different combinations - is a concept integral to synthetic biology. In vitro, it is embod-
ied by the notion of BioBrickTMparts: standardised DNA sequences of defined structure, function,
and common interfaces that can be composed and integrated into living cells. A similar modular-
ity in the modelling of such systems, however, has not been explored until much more recently.
In the course of the 2010 International Genetically Engineered Machine (iGEM) competition, the
University of Edinburgh team adopted an iterative rule-based approach to developing a BioBrick
model of light-based communication in Escherichia coli. The system was modelled in the Kappa
stochastic rule-based biological modelling language, allowing for the modular development and
analysis of a complicated biological system. It also utilised newly developed spatial extensions to
aid in the depiction of intercellular communication via light emitting and light sensing pathways,
demonstrating the extensibility of the language as a whole. This paper provides a case study of
modelling synthetic biology projects using the rule-based techniques outlined above, documenting
the benefits of this modular iterative approach.
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1 Introduction

The International Genetically Engineered Machine (iGEM) competition is an
annual undergraduate competition in synthetic biology, drawing together stu-
dents from various backgrounds including biology, engineering, informatics,
and social science. The goal of these interdisciplinary teams is to design and
construct novel synthetic biological systems, utilising modular DNA building
blocks known as BioBrickTMparts, that extend the library of well-characterised
modular parts for use in future projects (for further information, readers are
directed to http://ung.igem.org).

The University of Edinburgh iGEM team was one of 118 such teams that
participated in the 2010 competition, attaining a Gold Medal standard at the
Jamboree held at the Massachusetts Institute of Technology in November. The
focus of the team’s project was the development of a light-based communi-
cation system, involving the establishment of three independent channels of
communication in different spectral wavelengths to enable bacterial cells to
react with each other as well as with electronic systems. Crucial to this was
the modelling of the individual light sensors and emitters in action as well as
analysis of the proposed system as a whole, and for their efforts the University
of Edinburgh iGEM team won the Best Model special prize.

The modelling was undertaken using the Kappa stochastic rule-based bi-
ological modelling language [7]. Kappa represents biological entities such as
proteins, DNA, and RNA as agents, which are named sets of sites that can
be used to hold state or bind and interact with other agents. Interactions
are represented by rules in the form of precondition and effect, governed by
an associated rate of reaction that regulates how frequently the interaction
occurs. Rules differ from individual reactions since not all sites need to be de-
picted on participating agents - for example, phosphorylation at a particular
site may occur independently from whether its neighbouring site is bound or
not - which means that a single rule may encompass any number of individual
reactions. Rule-based modelling languages, including Kappa and the similar
BioNetGen Language [2], have been the focus of recent attention in developing
biological models that are concise, comprehensible, and easily extensible [1].

Rule-based approaches are useful when modelling synthetic biology. They
alleviate the quantitative combinatorial explosion that results from molecular
entities existing under multiple different conditions (for example, states of
phosphorylation). They are inherently flexible in nature; the association of
different independent rule sets implicitly generates different overall systems,
thus allowing modular development of subsystems and their composition into
a conjoined whole. They are also fully capable of accommodating complex
regulatory structures and combinatorial networks, and of doing so without
ever needing to fully enumerate the species that a set of rules might produce
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(thus greatly reducing computational complexity).

These advantages were exploited by Ty Thomson in 2009 in formulating
a framework for modelling BioBrick parts in Kappa [16]. This framework al-
lows for the modular description of individual parts within the system and
their composition into more complicated devices and systems, and by doing
so also provides the basis for an iterative incremental approach to modelling
synthetic biological systems. Such a modular methodology for modelling syn-
thetic biological systems was first explored by Marchisio and Stelling in 2008
[12]; this was also based on the BioBrick standard, and was formalised by
systems of ordinary differential equations (ODEs). More recent tools such as
TinkerCell [4] allow modellers to incorporate important principles such as
stochasticity and automated analysis into the modelling of BioBrick parts. Ty
Thomson’s framework, however, improves upon previous work by providing
the advantages of rule-based modelling described above on top of the efficient
simulation techniques supplied by Kappa.

This paper documents a rule-based approach to biological modelling, as
outlined above, in the context of collaborative synthetic biology projects such
as iGEM. It explores modular development, such as the design of individual
subsystems, the incremental addition to an established core, the verification
of component functionality, and the extension of the core model to achieve
results beyond the scope of more traditional approaches.

Section 2 briefly describes the main features of the model developed, before
the rest of the paper delves into the use of Kappa in creating the model:
section 3 elaborates upon the Kappa BioBrick framework, section 4 defines
the advantages of Kappa with regards to modularity and the iterative and
incremental development of the model, and finally section 5 demonstrates
how the approach can be extended (in this case, to the development of a
model of intercellular interactions). All models, submodels, and simulations
discussed throughout this paper are available at http://homepages.inf.ed.
ac.uk/s0458094/CS2Bio11.

2 The Model

The modelled system was based on the standard Elowitz repressilator [8]: three
genes connected in a feedback loop, such that each gene is repressed by the
previous gene in the loop and in turn represses the next gene, thus creating
a three-part oscillating device. This core repressilator formed the basis of a
composite device integrating three sets of light sensors and emitters (Figure
1). Previous efforts in the iGEM competition had focused on the development
and characterisation of these sensors and emitters, but not on matching paired
sensors and emitters of similar wavelengths, or on considering their combined
use in a single system.
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Fig. 1. Modelling the light emitting and light sensing pathways coupled to an Elowitz repressilator.
At the centre the oscillating repressilator regulates the emission of light in the system. The light
sensing pathways then provide input to this central regulator, reinforcing responses in an attempt
to synchronise the system.

Green light emissions were based on the standard firefly (Photinus pyralis)
luciferase enzyme [13], and then underwent site-directed mutagenesis to create
red light [3]. The blue light emission system was developed from a bacterial lu-
ciferase from Xenorhabdus luminescens [5]. The red light sensor was based on
a bacterial phytochrome [11], the blue light sensor was based on a plant pho-
totropin [14], and a novel fusion protein was designed as a green light sensor;
the red and hypothetical green sensors were modified from two-component reg-
ulatory systems, whereas the blue light sensor was an allosteric hybrid protein
with a simpler mechanism. For further information regarding the biological
aspects of the paper, readers are directed to the documentation on the team
wiki at http://2010.igem.org/Team:Edinburgh.

Each gene in the repressilating loop stimulates the production of light of
a particular wavelength; meanwhile, the light sensing pathways provide in-
put to the central repressilator to reinforce the response (activated green and
blue sensors inhibit the repressilator explicitly, whilst the activated red sen-
sor ceases promotion of the repressilator, hence inhibiting it implicitly). This
reinforcement helps to overcome the greatest weakness of the Elowitz repres-
silator: the fact that without external regulation such as quorum sensing [6,9],
the system oscillations are extremely imprecise. The ideal goal of the project
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Fig. 2. Simulation of the complete light network model, showing the interactions between light (top)
and the genes in the core repressilator (bottom). Units (time and concentration) are arbitrary.

was the development of a multi-cellular system capable of self-reinforcing col-
lective synchronisation.

The Kappa model created during the course of the project was a represen-
tation of the system described above. It was composed of 145 rules detailing the
function of sixteen BioBrick parts, not including those responsible for creation
of the light sensors (assumed to be constitutively expressed) and the proteins
associated with the various pathways. These rules could be decomposed into
seven constituent modules: the core repressilator (itself a combination of three
distinct devices), three light sensing pathways, and similarly three light emit-
ting pathways. The modular nature of the model is described in greater detail
in section 4 below.

Figure 2 shows typical results for the complete system, showing an oscillat-
ing structure with each light output linked to the absence of its corresponding
repressor (for example, high levels of red light are linked to an absence of the
LacI repressor within the system). The light thus produced helps to reinforce
the internal oscillations by inhibiting the production of a second repressor
protein within the system (in the case of the red light, inhibition of the TetR
repressor eventually allows blue light to be produced).

For further information regarding the use of Kappa in the modelling, read-
ers are directed to the supplementary information at http://homepages.inf.
ed.ac.uk/s0458094/CS2Bio11.

3 The Modular Kappa BioBrick Framework

One reason why rule-based languages such as Kappa are useful for modelling
biological systems is because they provide an invaluable aid to the organisa-
tion and thorough description of the biological parts involved. The structure

5

http://homepages.inf.ed.ac.uk/s0458094/CS2Bio11
http://homepages.inf.ed.ac.uk/s0458094/CS2Bio11


Stewart and Wilson-Kanamori

provided by Ty Thomson’s Kappa BioBrick framework [16] attempts to “in-
troduce a modular framework for modelling BioBrick parts and systems using
rule-based modelling”. It proved extremely useful in standardising the ex-
plicit description of the BioBrick parts used within the model, detailing the
actions of the individual parts as well as transcription factor combinatorics,
and simultaneously accounting for shared resources. For example, many of
the components in the completed system re-used individual parts, such that
a particular transcription rule, for example, could be invoked in the context
of multiple components within the system.

The framework divides all BioBrick parts into four broad categories ac-
cording to function (promoter sequences, coding sequences, ribosome binding
sites, and terminators) and establishes a concise and complete set of rules and
associated kinetic rates necessary to describe their interactions. Instead of re-
quiring modellers to rewrite equations every time they wish to create a new
model, the framework allows them to work at the granularity of individual
parts - once the rules for these parts have been established, they can be com-
posed together in a modular manner. This is similar to the use of BioBricks in
synthetic biology, the goal of which is simple composability allowing for easy
reuse of parts via the use of standardised interfaces.

The standard BioBrick part is composed of one or more DNA agents con-
nected in a chain. Each BioBrick part also has an RNA representation, defined
in a similar manner, which is necessary as the DNA may be transcribed.

All BioBrick DNA agents must have associated rules that describe the
transcription of the part from DNA to RNA whilst ‘passing along’ the RNA
polymerase involved, along with dealing with possible falloff of the RNA poly-
merase. Similarly, any RNA agent that can be translated must have rules that
deal with translation and the movement of the ribosome involved. RNA agents
must also describe their potential degradation (unlike DNA agents, which by
default are assumed not to degrade).

In addition to the above, some BioBrick parts require specific rules and
rates according to their function. BioBrick promoters, for instance, must define
the mechanism of transcription factor and RNA polymerase binding, as well
as the initiation of the transcription process after the RNA polymerase has
bound to it, in addition to the transcription proper as described previously.
BioBrick terminators generally have a higher falloff rate of RNA polymerase
than other BioBrick components due to their function in preventing further
transcription downstream.

Finally, the above rules do not take into account the actions of the proteins
after they are translated or any pathways that they may be involved in, bar
their possible effect as a transcription factor. Such considerations (for example,
protein degradation or kinase activity) are up to the individual modeller to
incorporate.
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As an example, the Kappa model below shows the rules defined for two
BioBrick components; a promoter activated by the transcription factor Lov-
TAP, and a coding sequence for the production of λ-cI.
### Global Rules
’Ribosome falloff’ \

Ribosome(rna!1), RNA(bind!1) -> Ribosome(rna), RNA(bind) @ ’ribosome falloff rate’
’RNAP falloff’ \

DNA(bind!1,down!3), RNAP(dna!1,rna!2), RNA(down!2), DNA(up!3,bind!_) -> \
DNA(bind,down!1), RNAP(dna,rna), RNA(down), DNA(up!1,bind!_) @ ’RNAP falloff rate’

### BBaK191007 trp promoter

# Transcription factor binding to promoter region.
’LOVTAP binding to K191007’ \

DNA(bind,type~K191007p2,down!2), DNA(up!2,bind,type~K191007p3), LOVTAP(dna) -> \
DNA(bind!1,type~K191007p2,down!2), DNA(up!2,bind,type~K191007p3), LOVTAP(dna!1) \
@ ’LOVTAP transcription factor binding rate’

’LOVTAP unbinding from K191007’ \
DNA(bind!1,type~K191007p2,down!2), DNA(up!2,bind,type~K191007p3), LOVTAP(dna!1) -> \
DNA(bind,type~K191007p2,down!2), DNA(up!2,bind,type~K191007p3), LOVTAP(dna) \
@ ’LOVTAP transcription factor unbinding rate’

# RNAP binding to promoter regions.
’RNAP binding to K191007 (no LOVTAP)’ \

DNA(bind,type~K191007p2,down!1), DNA(up!1,bind,type~K191007p3), RNAP(dna,rna) -> \
DNA(bind,type~K191007p2,down!1), DNA(up!1,bind!2,type~K191007p3), RNAP(dna!2,rna) \
@ ’high RNAP binding rate’

’RNAP binding to K191007 (LOVTAP on p2)’ \
DNA(bind!1,type~K191007p2,down!2), DNA(up!2,bind,type~K191007p3), \
LOVTAP(dna!1), RNAP(dna,rna) -> \
DNA(bind!1,type~K191007p2,down!2), DNA(up!2,bind!3,type~K191007p3), \
LOVTAP(dna!1), RNAP(dna!3,rna) @ ’low RNAP binding rate’

# Transcription.
’Transcription initiation of K191007’ \

DNA(bind!1,type~K191007p3,down!2), RNAP(dna!1,rna), DNA(up!2,bind) -> \
DNA(bind,type~K191007p3,down!3), RNAP(dna!1,rna!2), DNA(up!3,bind!1), \
RNA(bind,up,down!2,type~K191007) @ ’transcription initiation rate’

’Transcription of K191007 (readthrough)’ \
DNA(bind!1,type~K191007p1,down!2), DNA(up!2,bind,type~K191007p2,down!3), \
DNA(up!3,bind,type~K191007p3,down!4), DNA(up!4,bind), \
RNAP(dna!1,rna!5), RNA(down!5) -> \
DNA(bind,type~K191007p1,down!2), DNA(up!2,bind,type~K191007p2,down!3), \
DNA(up!3,bind,type~K191007p3,down!4), DNA(up!4,bind!1), \
RNAP(dna!1,rna!5), RNA(down!6), RNA(bind,up!6,down!5,type~K191007) \
@ ’transcription rate’

### BBaC0051 lambda-cI coding sequence

# Transcription.
’C0051 transcription’ \

DNA(bind!1,down!2,type~C0051), RNAP(dna!1,rna!3), DNA(up!2,bind), RNA(down!3) -> \
DNA(bind,down!2,type~C0051), RNAP(dna!1,rna!3), DNA(up!2,bind!1), RNA(down!4), \
RNA(bind,up!4,down!3,type~C0051) @ ’transcription rate’

# Translation
’cI translation initiation’ \

RNA(bind!2,down!1), RNA(bind,up!1,type~C0051), Ribosome(rna!2) -> \
RNA(bind,down!1), RNA(bind!2,up!1,type~C0051), Ribosome(rna!2) \
@ ’translation initiation rate’

’cI translation’ \
RNA(bind!1,type~C0051), Ribosome(rna!1) -> \
RNA(bind,type~C0051), Ribosome(rna), cI(dna) @ ’translation rate’
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The Kappa definitions for the BioBricks above are independent (apart from
the sharing of global kinetic rates) and their composition in a model is effected
by connecting the parts together as below.
### Composition of BioBricks
%init: 1 (DNA(up,down!1,bind,type~K191007p1), DNA(up!1,down!2,bind,type~K191007p2), \

DNA(up!2,down!3,bind,type~K191007p3), DNA(up!8,down!9,bind,type~C0051))

This Kappa statement produces a composite part in which the production
of λ-cI is dependant on the availability of the transcription factor LovTAP.
This is a simple example of the modular use of BioBrick Kappa modelling;
more complex models are available in the supplementary material.

4 Device Modularity and Iterative Development

The Kappa BioBrick framework also provides the basis for the modelling of
component devices that, when combined, make up the system as a whole.
This is accomplished in a similar manner to the modularity of the individual
BioBrick parts - individual devices, consisting of a set of agents, rules, and
associated variables, can be simply composed together into a single model.
Depending on the level of model granularity desired, additional non-framework
rules might be required (for example describing the activity of a signalling
pathway linking a translation product to a transcription factor); however,
these can be safely added independently of the core framework, and can be
thought of as a modular component unto themselves.

This two-fold modular nature of modelling in the Kappa BioBrick frame-
work lends itself to an iterative and incremental developmental approach to a
project. The ability for individual modules to be developed and verified inde-
pendently greatly simplifies the process of breaking down the overall effort into
manageable units, amenable to repeated cycles of refinement and extension.

As an example, the light communication model was composed of seven
components, each of which could be considered a functional model in its own
right; each of these could be validated individually (as shown in Figure 3 as
an example for the blue light sensing pathway) before being combined into a
whole.

The first iteration of development adapted the core Elowitz repressilator
component (Figure 4a) from a similar model created by Ty Thomson as the
proof-of-concept of the Kappa BioBrick framework. The modellers then added
the light generation pathways (Figure 4b) to the model, thus producing oscil-
lating light outputs linked to the oscillations of the core repressilator.

The next development iterations linked the light sensing pathways to the
core components. Initially, these pathways were modelled without allowing
the produced transcription factors to bind to the repressilator (Figure 4c);
this gave the team the ability to test the individual pathways in isolation,

8



Stewart and Wilson-Kanamori

(a) Blue light sensing (b) Blue light sensing perturbation

Fig. 3. Analysis of the blue light sensing pathway taken in isolation (thus demonstrating the mod-
ularity of the model). The wildtype pathway is depicted in red and the effect of its perturbation
via a strong light signal in green; when activated, the production and equilibrium concentration of
lambda-CI in the system falls. Simulations were run for eight independent cells; units (time and
concentration) are arbitrary.

(a) Core repressilator (b) Light emission pathways

(c) Light sensing pathways (d) Complete light network

Fig. 4. Evolution of the light communication system, from core repressilator to complete network,
showing the modular nature of the system and the iterative development approach.

via perturbation analysis of the type shown in Figure 3. Finally, this interim
model was extended to allow the transcription factors produced by the light
sensing pathways to bind to the BioBrick parts in the core repressilator and
affect their transcription directly (Figure 4d), thus resulting in the complete
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model of the overall target system.

A large proportion of the development involved repeated refinement of
the model and its accompanying kinetic parameters to obtain the behaviour
necessary for oscillation. Due to constraints on time and equipment in the
biological component of the project, these rate parameters were derived from
in silico trial-and-error analysis rather than in vitro experimentation. On the
other hand, such iterative development has continued beyond the scope of the
iGEM project; for example, recent developments in Kappa syntax [10] allow
for the declaration of global variables that can be used to control the rates
of multiple rules, thus affording another layer of modularity in the develop-
ment of the model as rules with similar function (for example, readthrough
transcription) can be controlled by a single parameter.

5 Spatial Extensions

Fig. 5. Modelled
bacterial colony

The above intracellular model was then extended to sim-
ulate the behaviour of an idealised colony of bacteria
communicating with each other using the light produced
within each cell. The assumption was made that the
bacteria were non-motile and closely packed in a two-
dimensional hexagonal biofilm (Figure 5). A custom, spa-
tially aware extension to basic Kappa [15] was used to
describe the bacterial colony, and additional rules were
added to represent the communication of light between
cells. This model was then converted to standard Kappa
and simulated using existing Kappa simulation tools [10].
### Sample Spatial Kappa diffusion rule
%transport: ’diffusion RED’ ’6way’ RED() @ ’light diffusion rate’

### Equivalent translated Kappa diffusion rule (one of many)
’diffusion RED-1’ \

RED(loc~cytosol,loc_index_1~0,loc_index_2~0) -> \
RED(loc~cytosol,loc_index_1~1,loc_index_2~0) @ ’light diffusion rate’

To measure the coherence or synchronisation of a colony of cells, a measure
similar to that described in Garcia-Ojalvo et al. (2004) [9] was used. At each
sample point, the light levels in each cell were recorded, along with the colony
mean (x̄) light levels, and standard deviation (σ) of the individual cell light
levels from these colony means. A lower mean standard deviation of these light
levels over the duration of the simulation was taken to signify an increased
level of colony synchronisation. The results were recorded over sufficiently
long simulations (109 events each) to allow accurate average behaviour to be
recorded. The results (Figure 6) show that a communicating colony has less
deviation in light levels between cells, and therefore increased synchronisation.
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Red Green Blue

x̄ σ x̄ σ x̄ σ

Isolated 22.51 25.71 32.40 36.35 37.17 39.44

Communicating 26.01 9.46 34.30 11.76 41.20 13.49

(a) Simulation Results

(b) Isolated cells (c) Communicating cells

Fig. 6. Comparison of mean cell light levels in 4x4 colonies of cells, both isolated and communicating
between cells in the colony. Shaded areas on the graphs show standard deviation of cell light levels
from colony mean. Communicating colony shows lower standard deviations, and hence increased
coherence in cell activity levels. Units (time and concentration) are arbitrary.

6 Conclusion

A fundamental challenge to synthetic biology is the engineering of biologi-
cal parts with behaviour that is well-defined in relation to other parts. This
not only requires controlled and precise measurement protocols, but also a
modelling language for the formalisation of these interactions. The Kappa
stochastic rule-based biological modelling language provides a means to this
end - a set of rules describing the ways in which the biological part interacts
with other parts present in the system.

Central to the effort to introduce the principles of engineering to biological
systems is the concept of modularity. BioBrick parts represent a step forward
in this direction, with defined structure and function and a common compos-
able interface. The 2010 University of Edinburgh iGEM team took a modular
iterative rule-based approach to the problem of modelling a synthetic biolog-
ical system, and found that not only did this ease the complexity of working
with interacting pathways and transcription networks, but also provided a
strong basis for future work through its flexibility. For example, although the
team were unsuccessful in actually creating a multi-cellular system capable of
self-reinforcing collective synchronisation in vivo, the modular nature of the
modelling means that it is relatively simple to swap components and re-wire
pathways to find optimal configurations, which can then be verified in vivo.

The Kappa rule-based approach has a number of advantages over its al-
ternatives, not least in the fact that it greatly reduces the combinatorial com-
plexity of the system in comparison to more traditional reaction-based mod-
els. Modular rules describe the functionality of individual BioBrick parts in an
easy-to-understand manner, thus aiding comprehension of the underlying bi-
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ology, and can be easily re-used both in different contexts within a model and
across multiple different models. The associated BioBrick modelling frame-
work is well-suited to working with individual parts and this can only improve
in the future with the development of dedicated support tools. The modular-
ity of the approach also makes it easy to apply flexible iterative development
methodologies to the problem, easing not only the complexity of the model
but also the complexity of the modelling process as well.
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